PF0310A

MOS FET Power Amplifier Module for VHF Band

HITACHI

ADE-208-315A (Z)
2nd. Edition
July 1996

Features

- Small package: $30 \times 10 \times 5.9 \mathrm{~mm}$
- High efficiency: 55% Typ
- Low power control current: 0.5 mA Max

Pin Arrangement

PF0310A

Internal Diagram and External Circuit

Absolute Maximum Ratings $\left(\mathrm{Tc}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Rating	Unit
Supply voltage	V_{DD}	17	V
Supply current	I_{DD}	3	A
PC voltage	V_{PC}	4.5	V
Input power	Pin	100	mW
Operating case temperature	$\mathrm{Tc}(\mathrm{op})$	-30 to +100	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-40 to +110	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathrm{Tc}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Frequency range	f	136	-	150	MHz	-
Drain cutoff current	I_{DS}	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=17 \mathrm{~V}, \mathrm{~V}_{\mathrm{PC}}=0 \mathrm{~V}$
Total efficiency	η_{T}	45	55	-	\%	$\mathrm{Pin}=20 \mathrm{~mW}, \mathrm{~V}_{\mathrm{DD}}=9.6 \mathrm{~V}$,
2nd harmonic distortion	2nd H.D.	-	-25	-20	dBc	Pout $=7 \mathrm{~W}$ (at $\mathrm{V}_{\text {PC }}$ controlled),
3rd harmonic distortion	3rd H.D.	-	-35	-30	dBc	$\mathrm{R}_{\mathrm{L}}=\mathrm{Rg}=50 \Omega, \mathrm{Tc}=25^{\circ} \mathrm{C}$
4th harmonic distortion	4rd H.D.	-	-40	-30	dBc	
Input VSWR	VSWR (in)	-	1.5	3.0	-	
Output VSWR	VSWR (out)	-	1.5	-	-	
Output power (1)	Pout (1)	7	9	-	W	$\begin{aligned} & \text { Pin }=20 \mathrm{~mW}, \mathrm{~V}_{\mathrm{DD}}=9.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PC}}=4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{Rg}=50 \Omega \end{aligned}$
Output power (2)	Pout (2)	2.5	3.5	-	W	$\begin{aligned} & \mathrm{Pin}=20 \mathrm{~mW}, \mathrm{~V}_{\mathrm{DD}}=6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PC}}=3.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{Rg}=50 \Omega \end{aligned}$
Load VSWR tolerance	-	No degradation			-	$\begin{aligned} & \text { Pin }=20 \mathrm{~mW}, \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \\ & \text { Pout } \leq 7 \mathrm{~W}, \text { (at } \mathrm{V}_{\mathrm{PC}} \text { controlled), } \\ & \text { Output VSWR }=6: 1 \text { All phases } \end{aligned}$
Stability	-	No parasitic oscillation			-	Pin $=20 \mathrm{~mW}, \mathrm{~V}_{\mathrm{DD}}=6$ to 15 V , Pout $\leq 7 \mathrm{~W}$, (at $\mathrm{V}_{\text {PC }}$ controlled), Output VSWR = 3:1 All phases

Mechanical Characteristics

Item	Conditions	Spec
Torque for screw up the heatsink flange	M 2.6 Screw Bolts	1.5 to $3.5 \mathrm{~kg} \cdot \mathrm{~cm}$
Warp size of the heatsink flange: S		$\mathrm{S}=0$
$+0.1 /-0 \mathrm{~mm}$		

PF0310A

Characteristics Curve

PF0310A

PF0310A

PF0310A

Package Dimensions

Unit: mm

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI

Hitachi, Ltd.
Semiconductor \& IC Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg
Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) \vdots http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan $\quad \vdots$ http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:

